Amazing Homemade 3DPrinted Drone >

When Mitre Corporation, a McLean-based defense contractor announced that they were looking for summer interns, University of Virginia engineering student Steven Easter and his brother and lab partner, Jonathan Turman applied the job. They got the assignment: to build an unmanned aerial vehicle, using 3DPrinting technology.

Luckily they got support from Professor David Sheffler, a 20-year veteran in aerospace engineering. Between May and August the team has been working on designing and building a plane entirely from parts from a 3DPrinter.

The plane has a 2 metre wingspan and all the parts were printed in layers in plastic. During four test flights in August and early September at Milton Airfield near Keswick, the plane achieved a cruising speed of 70 kilomertres per hour.

There are seven 3DPrinters in the Engineering School’s Rapid Prototyping Lab. These 3DPrinters allows students to design, modify and print the parts until they get exactly what they want…

(The unmanned aerial vehicle, “dressed” in U.Va.’s colors.)


(Mechanical and aerospace engineering professor and project adviser David Sheffler, left, with the “printed” plane’s creators, Steven Easter, center, and Jonathan Turman. )

This is “the third 3DPrinted plane known to have been built and flown.” notes in UVA Today’s news. The technology also allows students to take on complex design projects that previously were impractical.

“To make a plastic turbofan engine to scale five years ago would have taken two years, at a cost of about $250,000,” Sheffler said. “But with 3DPrinting we designed and built it in four months for about $2,000. This opens up an arena of teaching that was not available before. It allows us to train engineers for the real challenges they will face in industry.”

 

The students work impressed Mitre Corp. representatives and Army officials, they got a new task – “to build an improved plane – lighter, stronger, faster and more easily assembled.”

Besides creating an attractive and operational unmanned airplane, this is also a valuable experience for the students. “The students sometimes put in 80-hour workweeks, with many long nights in the lab.”

“It was sort of a seat-of-the-pants thing at first – wham, bang,” Easter said. “But we kept banging away and became more confident as we kept designing and printing out new parts.”

Source: UVA Today

Advertisements

NEW MATERIALS: Viscous Liquids & Flexible Solids >

Viscous Liquids

 

Recently TNO researchers have developed a print head that can handle viscous liquids. This allows computer controlled 3D printer to work with stronger objects.

Currently DIY 3D printers can build complex objects by extruding tiny droplets of liquid plastic through extruder but the printed objects are often not strong enough. To be able to print with a conventional print head, the material must be thin liquid and that means the monomers (long molecular chains, the building blocks of a plastic) is short.

“After curing the product is often brittle and fragile,” says Dr. René Houben of the Department Equipment for Additive Manufacturing of TNO.

To solve this problem Houben designed an entirely new print head, suitable for a mixture with much longer chains. The maximum workable viscosity is around 500 mPas (millipascal seconds, the unit of viscosity), similar to thick motor oil.

Houben presented his work at the end of September at the University of Twente.

Most home color printers work with “drop on demand” method: nozzle spits out ink exactly when required. For viscous liquids it does not work like that. For pressing “ink” through the nozzle you need a high pressure of a couple of hundred bar.

Houten made a so-called continuous inkjet to create a continuous stream of droplets. Once in motion only a much lower pressure is needed. The basis of the print head is a metal cylinder with a nozzle of 80 microns in diameter.

Inside the head, just above the nozzle, there is a cylinder with a piezoelectric crystal vibrating at 20 kHz and an amplitude of about 100 nm to ensure a stable flow of liquid.

The liquid is set to vibration and it breaks just below the nozzle at some twenty thousand identical droplets with a diameter of about 140 µm, with a speed of approximately 10 m/s.

In this printing system selective passage of droplets is essential – otherwise it would only be a flat printing. Existing continuous printing usually give droplets a small electric charge and bend them in the direction of a discharge chute. Most plastics, however, are non-conductive.

 

“It is possible to add conductive materials, but this changes the composition, which is usually undesirable. Think of materials for medical implants or displays, in which the material composition is very close, “says Houben.

 

He found an unusual solution: a fine stream of air from a syringe shoots unwanted droplets away. It sounds easy, but the on and off of an air flow of 20 kHz was not feasible.

Therefore TNO researchers developed a fine mechanical system with a continuous airflow – to set the droplet stream within 20 µs and can only shoot single drop out.

“We believe this is the way to get the fastest building speed. We strive to minimize the time that a print head does nothing”, says Houben.

A plastic block that is printed in layers by three heads in three colors: blue, red and transparent plastic. Photo: TNO

Besides 3D printing of relatively strong plastics, the print head has an unexpected application: making milk powder. Milk drops can be rapidly turned into powder by using spray drying in high spray towers.

Source: deingenieur
_________________________________________________________________________________________________________________



Flexible Solids

Fabbster uploaded a video of 3D prints of flexible material made on a Fabbster 3D printer. Fabbster uses a special material concept: SDM – stick deposition moulding.

The extruder of the printer is fed with special sticks developed by the fabbster team. These sticks are characterized by a cogging-shape on their sides. They are made by injection molding technique and thus are extremely precise. This innovation offers some major advantage over circular filament that is subject to slip.

The sticks are automatically fed to the extruder via a supply magazine. The result is a precise dosage of the melt. Also they can be easily combined to produce an object in various colors and materials.

^In this video, Fabbster showed objects printed using sticks made of flexible material and compared the print with ABS plastic print

Source: Fabbster

 

iPhone 3D Scanner: Trimensional >

Available now on the App Store: Trimensional

The world’s first 3D scanner for iPhone is here. Instantly capture 3D models of yourself, friends, and family, and share the amazing results with the world.Trimensional uses both the screen and the front-facing camera on your iOS device, detecting patterns of light reflected off your face to build a true 3D model.Not only is it incredible technology, but it’s incredibly fun! Capture goofy expressions, view your face from any angle, and customize the look of the 3D rendering before sending it off to all of your friends.

So, turn out the lights, turn up your screen brightness, and get ready for your close-up as you capture 3D scans using your iPhone 4 or iPod Touch (4th Generation). For best results, an extremely dark room is required and iPhone screen brightness must be set to maximum.

What’s New?

Trimensional: MakerBot Edition

-Trimensional can now share movies and animated GIFsof your 3D scans.

-Advanced users can unlock the 3D Model Export feature in order to create physical copies of any scanned object on a 3D printer, or to import textured 3D scans into popular 3D graphics software.

-Sign up to be notified when we release Trimensional for Android devices. 





REVIEW: Kinect 3DScan with Skanect >

Kinect for Xbox 360 logo

Kinect for Xbox 360 logo (Photo credit: Wikipedia)

____________________________________________________________________

3D BUSINESS & INVESTMENT ANALYSIS:

Manctl is one of 11 startups that won $20,000 (£12,300) of funding and support from Microsoft as part of its Kinect Accelerator program, the same as startup-in-law Ubi Interactive, and similarly remains independent as a business.

French startup Manctl has created a working answer to the question, “Have you ever wanted to produce a full-colour 3D model of your house?” Its solution was to use Microsoft’s Kinect for Windows, coupled with its own 3D mapping software.

Manctl’s first product, Skanect, allows anyone with a Kinect to rotate it around a room, providing the Skanect software with visual information that it stitches together to form a complete 3D image. Much like a Computer Aided Design (C.A.D.) drawing, the user is then able to zoom in or out of, rotate and navigate an on-screen 3D version of whatever was scanned.

“Our mission is to enable the masses to capture the world in 3D,” said Burrus “We’re working on a scanner that lets you scan people, objects and rooms,” co-founder and CTO Nicolas Burrus explained to Wired.co.uk previously. (http://www.wired.co.uk/news/archive/2012-05/27/skanect)

‘Manctl is a startup comprising CTO Burrus, who holds a PhD in computer vision technologies, and CEO Nicolas Tisserand, formerly a software architect working with computer DJ applications. “We’ve been friends for ten years,” said Burrus, “after meeting at university.

“We’re still figuring out our best business model, but what we definitely want to provide is a free version for consumers and enthusiasts to start scanning their children, their house, their animals and share it with their friends.

“It’ll be limited to online sharing; you can’t post-process it, as that’s for another category of people, like those in the prototyping industry, artists and people working in robotics.”

 “You can either use complex modeling software that’s used by the movie industry, or use a capturing device such as a laser scanner. This works, but costs [up to] $40,000 (£25,500), so it’s not for the mass market.” ‘

3DPrinting an EU Industrial Revival? >

  • EU paper promotes new tech to boost GDP from 16% to 20% of EU GDP by 2020
  • Manufacturing job losses 3 million since crisis
  • Advanced manufacturing markets to double by 2015

The decline in the European Union’s manufacturing is the center of the sights for The European Commission’s leaked paper seek by Reuters  asking countries to invest heavily in new technologies such as 3DPrinting.

The European Union’s main regulators are aiming to ensure that new technologies are exploited to cheapen manufacturing costs and increase production to combat the trends for diminishing output of the key manufacturing industries in Europe.

The paper, which outlines the bloc’s future industrial policy, said the commission wants to raise manufacturing from 16 percent to 20 percent of EU GDP by 2020 using new techniques such as 3DPrinting – the technology that enthusiasts calculate will revolutionise manufacturing, including electronics such as mobile phones, and save millions in costs.

The Commission also wants countries to invest heavily in advanced technologies such as industrial biotechnology – which uses living cells to make materials such as chemicals, detergents and paper.

The market for such technologies is tipped to grow by 50 percent from 646 billion euros to more than 1 trillion euros by 2015, the paper said.

Industrial production has declined 10 percent since the crisis and more than 3 million industrial jobs have been lost.

The car industry is among the hardest hit, with large over capacity in mid-market car makers in France, Spain and Italy: Total European car sales fell 6.6 percent in the period from January to August this year.

The paper indicates that the European Union has not exploited past emerging industries such as rechargeable lithium batteries. It says European firms hold more than 30 percent of the relevant patents “without any production of such batteries taking place in the EU”.

To reverse such trends the Commission proposes non-binding targets for manufacturing and investment, both public and private.

The European commissioner in charge of industrial policy Antonio Tajani (see profile link below) will launch the new proposals on Wednesday.

The policy will also promote green vehicles, smart grids, sustainable construction materials, and so-called key enabling technologies which include nanotechnology and photonics.’

_____________________________________________________________________

FOCUS: PERSON

Antonio TAJANI – European commissioner in charge of industrial policy

 

Born on 4 August 1953, Roma, Italy

  

Curriculum vitae (The MEP is solely responsible for the information published)

 

  • Graduate in law (La Sapienza University of Rome). Editor of ‘Il Settimanale’ (1982); presenter of Radio 1 news programme (1982); head of the Rome editorial office of the newspaper ‘Il Giornale’ (1983).
  • Spokesman for the Prime Minister (1994). Vice-chairman of the European People’s Party. Member of Rome City Council (since June 2001).
  • Member of the European Parliament (since 1994). Head of the Forza Italia delegation in the European Parliament.

http://www.europarl.europa.eu/meps/en/2187/ANTONIO_TAJANI.html

 

More: 

http://ec.europa.eu/digital-agenda/en/futurium/future/personalized-manufacturing-3d-printing-and-more
http://in.reuters.com/article/2012/10/08/eu-industrialpolicy-idINL6E8L8NYP20121008
http://www.businesstimes.com.sg/breaking-news/world/eu-sees-industrial-revival-through-3d-printing-and-biotech-20121009

INTELLECTUAL PROPERTY: 3DPrinting V’s Government? >

Maker Faire 2012 in New York last weekend was a great place to see, first hand, the products and processes behind a very promising technology that’s been receiving so much attention lately, and rightfully so. It’s clear to many that 3DPrinting isn’t merely a passing fad, but perhaps an evolutionary step in the field of manufacturing, if not revolutionary, and that has some people very nervous.

3DPrinting has the potential to shake up the consumer landscape as we know it.

Not today, not tomorrow, but down the line, home printing machines like those of RepRap, and Makerbot,  are only going to get more advanced and accessible. There will come a time when home users will be able to print everyday objects from home.

That’s an awesome thing, and perhaps scary to some.

3D Fan
 

3DPrinting has now captured headlines for just being itself – what it can do now, what it will do in the future – but just as many headlines are now being captured by 3DPrinting’s recent darker application’s, such as the hobbiest project to create a home 3DPrintable gun  by Defense Distributed.

“The Defense Distributed’s goal isn’t really about personal armament, it’s more the liberation of information,” they suggest in a video promoting Wiki Weapon. “It’s about living in a world where you just download for the thing you want to make in this life. As the printing press kind of revolutionised literacy, 3DPrinting is in its moment.”

Politics being what they are, you have to wonder if 3DPrinting will ultimately fulfill its potential of shaking up the industry and revolutionizing big industry, or if big industry, along with the government, will weigh the technology down with rules, regulations, and a ton of red tape. As CreativityGames.net points out, it’s only a matter of time before the lobbying for laws and restrictions begins.

“They put fear into people’s heads. These devices could be used by terrorists in malicious ways. Criminals could print guns and other weapons with them. Kids could make all manner of things they shouldn’t with them. Inevitably, someone does create something evil with one of these devices. Governments everywhere fall in line and enact laws heavily restricting their use. You now need a license to own one, and legally they must have restrictions on them that only allow them to print designs approved by the government…” – CreativityGames.net

Maker Faire 2012 showed some wonderful applications of this budding new technology – it would be shame if all the things we saw and the potential that exists were ultimately hamstrung by corporations and governments.’

Adapted From: http://hothardware.com/News/Threat-of-3D-Printing-Will-Governments-and-Big-Industry-Crush-a-Promising-Technology/

3DPrinting NOT Revolutionary?

 

Printed robot at the Oslo School of Architecture and Design. (flickr/Mads Boedker)

_________________________________________________________________________________________

SPECIALIST KNOWLEDGE LEVEL  > > >3> >


A new digital revolution is coming, this time in fabrication. It draws on the same insights that led to the earlier digitisations of communication and computation, but now what is being programmed is the physical world rather than the virtual one. Digital fabrication will allow individuals to design and produce tangible objects on demand, wherever and whenever they need them. Widespread access to these technologies will challenge traditional models of business, foreign aid, and education.

The roots of the revolution date back to 1952, when researchers at the Massachusetts Institute of Technology (MIT) wired an early digital computer to a milling machine, creating the first numerically controlled machine tool. By using a computer program instead of a machinist to turn the screws that moved the metal stock, the researchers were able to produce aircraft components with shapes that were more complex than could be made by hand. From that first revolving end mill, all sorts of cutting tools have been mounted on computer-controlled platforms, including jets of water carrying abrasives that can cut through hard materials, lasers that can quickly carve fine features, and slender electrically charged wires that can make long thin cuts. 

Today, numerically controlled machines touch almost every commercial product, whether directly (producing everything from laptop cases to jet engines) or indirectly (producing the tools that mold and stamp mass-produced goods). And yet all these modern descendants of the first numerically controlled machine tool share its original limitation: they can cut, but they cannot reach internal structures. This means, for example, that the axle of a wheel must be manufactured separately from the bearing it passes through. 

The aim is to not only produce the parts for a drone, for example, but build a complete vehicle that can fly right out of the printer.

In the 1980s, however, computer-controlled fabrication processes that added rather than removed material (called additive manufacturing) came on the market. Thanks to 3DPrinting, a bearing and an axle could be built by the same machine at the same time. A range of 3DPrinting processes are now available, including thermally fusing plastic filaments, using ultraviolet light to cross-link polymer resins, depositing adhesive droplets to bind a powder, cutting and laminating sheets of paper, and shining a laser beam to fuse metal particles. Businesses already use 3DPrinting to model products before producing them, a process referred to as rapid prototyping. Companies also rely on the technology to make objects with complex shapes, such as jewelry and medical implants. Research groups have even used 3DPrinting to build structures out of cells with the goal of printing living organs.

Additive manufacturing has been widely hailed as a revolution, featured on the cover of publications from Wired to The Economist…

This is, however, a curious sort of revolution, proclaimed more by its observers than its practitioners. In a well-equipped workshop, a 3DPrinting might be used for about a quarter of the jobs, with other machines doing the rest. One reason is that the printers are slow, taking hours or even days to make things. Other computer-controlled tools can produce parts faster, or with finer features, or that are larger, lighter, or stronger. Glowing articles about 3DPrinting read like the stories in the 1950s that proclaimed that microwave ovens were the future of cooking. Microwaves are convenient, but they don’t replace the rest of the kitchen.

The revolution is not additive versus subtractive manufacturing; it is the ability to turn data into things and things into data. That is what is coming; for some perspective, there is a close analogy with the history of computing. The first step in that development was the arrival of large mainframe computers in the 1950s, which only corporations, governments, and elite institutions could afford. Next came the development of minicomputers in the 1960s, led by Digital Equipment Corporation’s PDP family of computers, which was based on MIT’s first transistorized computer, the TX-0. These brought down the cost of a computer from hundreds of thousands of dollars to tens of thousands. That was still too much for an individual but was affordable for research groups, university departments, and smaller companies.

The people who used these devices developed the applications for just about everything one does now on a computer: sending e-mail, writing in a word processor, playing video games, listening to music. After minicomputers came hobbyist computers. The best known of these, the MITS Altair 8800, was sold in 1975 for about $1,000 assembled or about $400 in kit form. Its capabilities were rudimentary, but it changed the lives of a generation of computing pioneers, who could now own a machine individually. Finally, computing truly turned personal with the appearance of the IBM personal computer in 1981. It was relatively compact, easy to use, useful, and affordable.

Just as with the old mainframes, only institutions can afford the modern versions of the early bulky and expensive computer-controlled milling devices. In the 1980s, first-generation rapid prototyping systems from companies such as 3D Systems, Stratasys, Epilog Laser, and Universal brought the price of computer-controlled manufacturing systems down from hundreds of thousands of dollars to tens of thousands, making them attractive to research groups.

The next-generation digital fabrication products on the market now, such as the RepRap, the MakerBot, the Ultimaker, the PopFab, and the MTM Snap, sell for thousands of dollars assembled or hundreds of dollars as parts. Unlike the digital fabrication tools that came before them, these tools have plans that are typically freely shared, so that those who own the tools (like those who owned the hobbyist computers) can not only use them but also make more of them and modify them. Integrated personal digital fabricators comparable to the personal computer do not yet exist, but they will.

Personal fabrication has been around for years as a science-fiction staple. When the crew of the TV series Star Trek: The Next Generation was confronted by a particularly challenging plot development, they could use the onboard replicator to make whatever they needed. Scientists at a number of labs (including mine) are now working on the real thing, developing processes that can place individual atoms and molecules into whatever structure they want. Unlike 3DPrinting today, these will be able to build complete functional systems at once, with no need for parts to be assembled. The aim is to not only produce the parts for a drone, for example, but build a complete vehicle that can fly right out of the printer. This goal is still years away, but it is not necessary to wait: most of the computer functions one uses today were invented in the minicomputer era, long before they would flourish in the era of personal computing. Similarly, although today’s digital manufacturing machines are still in their infancy, they can already be used to make (almost) anything, anywhere. That changes everything.

THINK GLOBALLY, FABRICATE LOCALLY

I first appreciated the parallel between personal computing and personal fabrication when I taught a class called “How to Make (almost) Anything” at MIT’s Center for Bits and Atoms, which I direct. CBA, which opened in 2001 with funding from the National Science Foundation, was developed to study the boundary between computer science and physical science. It runs a facility that is equipped to make and measure things that are as small as atoms or as large as buildings. 

We designed the class to teach a small group of research students how to use CBA’s tools but were overwhelmed by the demand from students who just wanted to make things. Each student later completed a semester-long project to integrate the skills they had learned. One made an alarm clock that the groggy owner would have to wrestle with to prove that he or she was awake. Another made a dress fitted with sensors and motorized spine-like structures that could defend the wearer’s personal space. The students were answering a question that I had not asked: What is digital fabrication good for? As it turns out, the “killer app” in digital fabrication, as in computing, is personalisation, producing products for a market of one person.

Inspired by the success of that first class, in 2003, CBA began an outreach project with support from the National Science Foundation. Rather than just describe our work, we thought it would be more interesting to provide the tools. We assembled a kit of about $50,000 worth of equipment (including a computer-controlled laser, a 3DPrinting, and large and small computer-controlled milling machines) and about $20,000 worth of materials (including components for molding and casting parts and producing electronics). All the tools were connected by custom software. These became known as “fab labs” (for “fabrication labs” or “fabulous labs”). Their cost is comparable to that of a minicomputer, and we have found that they are used in the same way: to develop new uses and new users for the machines.

Starting in December of 2003, a CBA team led by Sherry Lassiter, a colleague of mine, set up the first fab lab at the South End Technology Center, in inner-city Boston. SETC is run by Mel King, an activist who has pioneered the introduction of new technologies to urban communities, from video production to Internet access. For him, digital fabrication machines were a natural next step. For all the differences between the MIT campus and the South End, the responses at both places were equally enthusiastic. A group of girls from the area used the tools in the lab to put on a high-tech street-corner craft sale, simultaneously having fun, expressing themselves, learning technical skills, and earning income. Some of the home-schooled children in the neighborhood who have used the fab lab for hands-on training have since gone on to careers in technology.

The digitization of material is not a new idea. It is four billion years old, going back to the evolutionary age of the ribosome.

The SETC fab lab was all we had planned for the outreach project. But thanks to interest from a Ghanaian community around SETC, in 2004, CBA, with National Science Foundation support and help from a local team, set up a second fab lab in the town of Sekondi-Takoradi, on Ghana’s coast. Since then, fab labs have been installed everywhere from South Africa to Norway, from downtown Detroit to rural India. In the past few years, the total number has doubled about every 18 months, with over 100 in operation today and that many more being planned. These labs form part of a larger “maker movement” of high-tech do-it-yourselfers, who are democratizing access to the modern means to make things.

Local demand has pulled fab labs worldwide. Although there is a wide range of sites and funding models, all the labs share the same core capabilities. That allows projects to be shared and people to travel among the labs. Providing Internet access has been a goal of many fab labs. From the Boston lab, a project was started to make antennas, radios, and terminals for wireless networks. The design was refined at a fab lab in Norway, was tested at one in South Africa, was deployed from one in Afghanistan, and is now running on a self-sustaining commercial basis in Kenya. None of these sites had the critical mass of knowledge to design and produce the networks on its own. But by sharing design files and producing the components locally, they could all do so together. The ability to send data across the world and then locally produce products on demand has revolutionary implications for industry.

The first Industrial Revolution can be traced back to 1761, when the Bridgewater Canal opened in Manchester, England. Commissioned by the Duke of Bridgewater to bring coal from his mines in Worsley to Manchester and to ship products made with that coal out to the world, it was the first canal that did not follow an existing waterway. Thanks to the new canal, Manchester boomed. In 1783, the town had one cotton mill; in 1853, it had 108. But the boom was followed by a bust. The canal was rendered obsolete by railroads, then trucks, and finally containerized shipping. Today, industrial production is a race to the bottom, with manufacturers moving to the lowest-cost locations to feed global supply chains.

Now, Manchester has an innovative fab lab that is taking part in a new industrial revolution. A design created there can be sent electronically anywhere in the world for on-demand production, which effectively eliminates the cost of shipping. And unlike the old mills, the means of production can be owned by anyone. 

Why might one want to own a digital fabrication machine? Personal fabrication tools have been considered toys, because the incremental cost of mass production will always be lower than for one-off goods. A similar charge was leveled against personal computers. Ken Olsen, founder and CEO of the minicomputer-maker Digital Equipment Corporation, famously said in 1977 that “there is no reason for any individual to have a computer in his home.” His company is now defunct. You most likely own a personal computer. It isn’t there for inventory and payroll; it is for doing what makes you yourself: listening to music, talking to friends, shopping. Likewise, the goal of personal fabrication is not to make what you can buy in stores but to make what you cannot buy. Consider shopping at IKEA. The furniture giant divines global demand for furniture and then produces and ships items to its big-box stores. For just thousands of dollars, individuals can already purchase the kit for a large-format computer-controlled milling machine that can make all the parts in an IKEA flat-pack box. If having the machine saved just ten IKEA purchases, its expense could be recouped. Even better, each item produced by the machine would be customized to fit the customer’s preference. And rather than employing people in remote factories, making furniture this way is a local affair.

This last observation inspired the Fab City project, which is led by Barcelona’s chief architect, Vicente Guallart. Barcelona, like the rest of Spain, has a youth unemployment rate of over 50 percent. An entire generation there has few prospects for getting jobs and leaving home. Rather than purchasing products produced far away, the city, with Guallart, is deploying fab labs in every district as part of the civic infrastructure. The goal is for the city to be globally connected for knowledge but self-sufficient for what it consumes.

The digital fabrication tools available today are not in their final form. But rather than wait, programs like Barcelona’s are building the capacity to use them as they are being developed.

BITS AND ATOMS

In common usage, the term “digital fabrication” refers to processes that use the computer-controlled tools that are the descendants of MIT’s 1952 numerically controlled mill. But the “digital” part of those tools resides in the controlling computer; the materials themselves are analog. A deeper meaning of “digital fabrication” is manufacturing processes in which the materials themselves are digital. A number of labs (including mine) are developing digital materials for the future of fabrication. 

The distinction is not merely semantic. Telephone calls used to degrade with distance because they were analog: any errors from noise in the system would accumulate. Then, in 1937, the mathematician Claude Shannon wrote what was arguably the best-ever master’s thesis, at MIT. In it, he proved that on-off switches could compute any logical function. He applied the idea to telephony in 1938, while working at Bell Labs. He showed that by converting a call to a code of ones and zeros, a message could be sent reliably even in a noisy and imperfect system. The key difference is error correction: if a one becomes a 0.9 or a 1.1, the system can still distinguish it from a zero.

Digital fabrication could be used to produce weapons of individual destruction.

At MIT, Shannon’s research had been motivated by the difficulty of working with a giant mechanical analog computer. It used rotating wheels and disks, and its answers got worse the longer it ran. Researchers, including John von Neumann, Jack Cowan, and Samuel Winograd, showed that digitizing data could also apply to computing: a digital computer that represents information as ones and zeros can be reliable, even if its parts are not. The digitization of data is what made it possible to carry what would once have been called a supercomputer in the smart phone in one’s pocket. 

These same ideas are now being applied to materials. To understand the difference from the processes used today, compare the performance of a child assembling LEGO pieces to that of a 3DPrinting.

First, because the LEGO pieces must be aligned to snap together, their ultimate positioning is more accurate than the motor skills of a child would usually allow. By contrast, the 3DPrinting process accumulates errors – as anyone who has checked on a 3DPrint that has been building for a few hours only to find that it has failed because of imperfect adhesion in the bottom layers can attest.

Second, the LEGO pieces themselves define their spacing, allowing a structure to grow to any size. A 3DPrinter is limited by the size of the system that positions the print head.

Third, LEGO pieces are available in a range of different materials, whereas 3DPrinters have a limited ability to use dissimilar materials, because everything must pass through the same printing process.

Fourth, a LEGO construction that is no longer needed can be disassembled and the parts reused; when parts from a 3DPrinter are no longer needed, they are thrown out.

These are exactly the differences between an analog system (the continuous deposition of the 3DPrinter) and a digital one (the LEGO assembly).

The digitization of material is not a new idea. It is four billion years old, going back to the evolutionary age of the ribosome, the protein that makes proteins. Humans are full of molecular machinery, from the motors that move our muscles to the sensors in our eyes. The ribosome builds all that machinery out of a microscopic version of LEGO pieces, amino acids, of which there are 22 different kinds. The sequence for assembling the amino acids is stored in DNA and is sent to the ribosome in another protein called messenger RNA. The code does not just describe the protein to be manufactured; it becomes the new protein. 

Labs like mine are now developing 3D assemblers (rather than printers) that can build structures in the same way as the ribosome. The assemblers will be able to both add and remove parts from a discrete set. One of the assemblers we are developing works with components that are a bit bigger than amino acids, cluster of atoms about ten nanometers long – an amino acid is around one nanometer long. These can have properties that amino acids cannot, such as being good electrical conductors or magnets.

The goal is to use the nanoassembler to build nanostructures, such as 3D integrated circuits. Another assembler we are developing uses parts on the scale of microns to millimeters. We would like this machine to make the electronic circuit boards that the 3D integrated circuits go on. Yet another assembler we are developing uses parts on the scale of centimeters, to make larger structures, such as aircraft components and even whole aircraft that will be lighter, stronger, and more capable than today’s planes: think a jumbo jet that can flap its wings.

A key difference between existing 3DPrinters and these assemblers is that the assemblers will be able to create complete functional systems in a single process. They will be able to integrate fixed and moving mechanical structures, sensors and actuators, and electronics. Even more important is what the assemblers don’t create: trash. Trash is a concept that applies only to materials that don’t contain enough information to be reusable. All the matter on the forest floor is recycled again and again. Likewise, a product assembled from digital materials need not be thrown out when it becomes obsolete. It can simply be disassembled and the parts reconstructed into something new.

The most interesting thing that an assembler can assemble is itself. For now, they are being made out of the same kinds of components as are used in rapid prototyping machines. Eventually, however, the goal is for them to be able to make all their own parts. The motivation is practical. The biggest challenge to building new fab labs around the world has not been generating interest, or teaching people how to use them, or even cost; it has been the logistics.

Bureaucracy, incompetent or corrupt border controls, and the inability of supply chains to meet demand have hampered our efforts to ship the machines around the world. When we are ready to ship assemblers, it will be much easier to mail digital material components in bulk and then e-mail the design codes to a fab lab so that one assembler can make another. 

Assemblers’ being self-replicating is also essential for their scaling. Ribosomes are slow, adding a few amino acids per second. But there are also very many of them, tens of thousands in each of the trillions of cells in the human body, and they can make more of themselves when needed. Likewise, to match the speed of the Star Trek replicator, many assemblers must be able to work in parallel.

GUNS. LOTS OF GUNS

Are there dangers to this sort of technology? In 1986, the engineer Eric Drexler, whose doctoral thesis at MIT was the first in molecular nanotechnology, wrote about what he called “gray goo,” a doomsday scenario in which a self-reproducing system multiplies out of control, spreads over the earth, and consumes all its resources.

In 2000, Bill Joy, a computing pioneer, wrote in Wired magazine about the threat of extremists building self-reproducing weapons of mass destruction. He concluded that there are some areas of research that humans should not pursue. In 2003, a worried Prince Charles asked the Royal Society, the United Kingdom’s fellowship of eminent scientists, to assess the risks of nanotechnology and self-replicating systems.

Although alarming, Drexler’s scenario does not apply to the self-reproducing assemblers that are now under development: these require an external source of power and the input of nonnatural materials. Although biological warfare is a serious concern, it is not a new one; there has been an arms race in biology going on since the dawn of evolution.

“A more immediate threat is that digital fabrication could be used to produce weapons of individual destruction. An amateur gunsmith has already used a 3DPrinter to make the lower receiver of a semiautomatic rifle, the AR-15.”

This heavily regulated part holds the bullets and carries the gun’s serial number. A German hacker made 3- copies of tightly controlled police handcuff keys. Two of my own students, Will Langford and Matt Keeter, made master keys, without access to the originals, for luggage padlocks approved by the U.S. Transportation Security Administration. They x-rayed the locks with a CT scanner in our lab, used the data to build a 3D computer model of the locks, worked out what the master key was, and then produced working keys with three different processes: numerically controlled milling, 3DPrinting, and molding and casting.

These kinds of anecdotes have led to calls to regulate 3DPrinters. When I have briefed rooms of intelligence analysts or military leaders on digital fabrication, some of them have invariably concluded that the technology must be restricted. Some have suggested modeling the controls after the ones placed on color laser printers. When that type of printer first appeared, it was used to produce counterfeit currency. Although the fake bills were easily detectable, in the 1990s the U.S. Secret Service convinced laser printer manufacturers to agree to code each device so that it would print tiny yellow dots on every page it printed. The dots are invisible to the naked eye but encode the time, date, and serial number of the printer that printed them. In 2005, the Electronic Frontier Foundation, a group that defends digital rights, decoded and publicized the system. This led to a public outcry over printers invading peoples’ privacy, an ongoing practice that was established without public input or apparent checks.

Justified or not, the same approach would not work with 3DPrinters. There are only a few manufacturers that make the print engines used in laser printers. So an agreement among them enforced the policy across the industry. There is no corresponding part for 3DPrinters. The parts that cannot yet be made by the machine builders themselves, such as computer chips and stepper motors, are commodity items: they are mass-produced and used for many applications, with no central point of control. The parts that are unique to 3-D printing, such as filament feeders and extrusion heads, are not difficult to make. Machines that make machines cannot be regulated in the same way that machines made by a few manufacturers can be. 

here is some barrier to entry to using the intellectual property and if infringement can be identified. That applies to the products made in expensive integrated circuit foundries, but not to those made in affordable fab labs. Anyone with access to the tools can replicate a design anywhere; it is not feasible to litigate against the whole world. Instead of trying to restrict access, flourishing software businesses have sprung up that freely share their source codes and are compensated for the services they provide. The spread of digital fabrication tools is now leading to a corresponding practice for open-source hardware.

RepRap and Bowyer

PLANNING INNOVATION

Communities should not fear or ignore digital fabrication. Better ways to build things can help build better communities. A fab lab in Detroit, for example, which is run by the entrepreneur Blair Evans, offers programs for at-risk youth as a social service. It empowers them to design and build things based on their own ideas.

It is possible to tap into the benefits of digital fabrication in several ways. One is top down. In 2005, South Africa launched a national network of fab labs to encourage innovation through its National Advanced Manufacturing Technology Strategy. In the United States, Representative Bill Foster (D-Ill.) proposed legislation, the National Fab Lab Network Act of 2010, to create a national lab linking local fab labs. The existing national laboratory system houses billion-dollar facilities but struggles to directly impact the communities around them. Foster’s bill proposes a system that would instead bring the labs to the communities. 

Another approach is bottom up. Many of the existing fab lab sites, such as the one in Detroit, began as informal organizations to address unmet local needs. These have joined regional programs. These regional programs, such as the United States Fab Lab Network and FabLab.nl, in Belgium, Luxembourg, and the Netherlands, take on tasks that are too big for an individual lab, such as supporting the launch of new ones. The regional programs, in turn, are linking together through the international Fab Foundation, which will provide support for global challenges, such as sourcing specialized materials around the world.

To keep up with what people are learning in the labs, the fab lab network has launched the Fab Academy. Children working in remote fab labs have progressed so far beyond any local educational opportunities that they would have to travel far away to an advanced institution to continue their studies. To prevent such brain drains, the Fab Academy has linked local labs together into a global campus. Along with access to tools, students who go to these labs are surrounded by peers to learn from and have local mentors to guide them. They participate in interactive global video lectures and share projects and instructional materials online.

The traditional model of advanced education assumes that faculty, books, and labs are scarce and can be accessed by only a few thousand people at a time. In computing terms, MIT can be thought of as a mainframe: students travel there for processing. Recently, there has been an interest in distance learning as an alternative, to be able to handle more students. This approach, however, is like time-sharing on a mainframe, with the distant students like terminals connected to a campus. The Fab Academy is more akin to the Internet, connected locally and managed globally. The combination of digital communications and digital fabrication effectively allows the campus to come to the students, who can share projects that are locally produced on demand.

The U.S. Bureau of Labor Statistics forecasts that in 2020, the United States will have about 9.2 million jobs in the fields of science, technology, engineering, and mathematics. According to data compiled by the National Science Board, the advisory group of the National Science Foundation, college degrees in these fields have not kept pace with college enrollment. And women and minorities remain significantly underrepresented in these fields. Digital fabrication offers a new response to this need, starting at the beginning of the pipeline. Children can come into any of the fab labs and apply the tools to their interests. The Fab Academy seeks to balance the decentralized enthusiasm of the do-it-yourself maker movement and the mentorship that comes from doing it together.

After all, the real strength of a fab lab is not technical; it is social. The innovative people that drive a knowledge economy share a common trait: by definition, they are not good at following rules. To be able to invent, people need to question assumptions. They need to study and work in environments where it is safe to do that. Advanced educational and research institutions have room for only a few thousand of those people each. By bringing welcoming environments to innovators wherever they are, this digital revolution will make it possible to harness a larger fraction of the planet’s brainpower.

Digital fabrication consists of much more than 3DPrinting. It is an evolving suite of capabilities to turn data into things and things into data. Many years of research remain to complete this vision, but the revolution is already well under way. The collective challenge is to answer the central question it poses:

How will we live, learn, work, and play when anyone can make anything, anywhere?